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1, Introduction 

The notion of a d i f f e r e n t i a l  equation with he red i t a ry  dependence i s  

by no means new, and, i n  f a c t ,  dates back t o  the very e a r l y  days of t h e  notion 

cf a d i f f e r e n t i a l  equation i tself ,  Apparently t h e  first mathematician t o  

se r ious ly  consider and inves t iga t e  such dependence w a s  John Bernoulli who 

published h i s  r e s u l t s  i n  1728, Early considerations are a l s o  t o  be bound 

i n  t h e  work of E u l e r o  

i n i t i a l l y  suggested t h e  introduction of he red i t a ry  a f f e r e n t i a l  equations 

were later found t o  be more conveniently handled i n  terms of p a r t i a l  differen- 

However; t h e  problems i n  mechanics which had 

t i a l  equations,  Hence, as a consequence of a lack  of fuPther motivation 

a t  the t i m e  and, of  course, the need t o  f i rs t  develop a s u b s t a n t i a l  theory 

f o r  d i f f e r e n t i a l  equations i n  the  ordinary sense,  further development of  

he red i t a ry  dependence w a s  l e f t  f o r  t h e  twentieth centuryo The next milestone 

was t h e  b r i l l i a n t  and f a r s igh ted  accomplishments of  Vol te r r ra  i n  h i s  

i nves t iga t ion  of t h e  Lrowth properties of i n t e r a c t i n g  species of organisms e \ 
With t h e  exclusion of t h i s  work, t h e  present theory i s  s u b s t a n t i a l l y  t h e  

..-- 

- \ 





The contents of t h f s  pa,pr is an ex.pamfon and somewhat, reformulated 

version of material dcvelqed by %he author and J. IC Eale for sainar 

presentation at RIAS two years agQo Mom recently It has constituted part 

Dr. Jo KO Bale ,  for many suggestions which substantially improved the qlllitllty 

of t b i s  work.. 

%(d) = f ( t ,  X Q t ) ,  x(t - 71)9".09x(t - T,)), 

f: 1.1) 

Equakions w h e r e  change of state involves dependence on the s ta te  QVW an interval 
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of fixed length, 

%(t) == f ( t ,  x 1 [t - 1, tl), (1041 

are included, as me ecguat,ians w i t h  dependence on the  ent i re  state hfstory, 

k ( t )  = f ( t 3  x I (-w9 t l ) .  (1.5) 

Other types included are i l l u s t r a t e d  by %ke f ~ m  

t l  

2 
q t >  = f ( t ,  xit;, x( - 

kgt) :- r{t, x 3 I t o9  % I ) ,  

and 

Many more d i f f e ren t  types are eontafne3 in our gene-d class, bu% enough have 

been pPesented t o  be suggested of t h e  broad scope o f t h i s  study, 

passing t h a t  equtttion(L5) i n  et sense includes a l l  the other forms l i s t e d  as 

special eases. Kmever, in as much as It i s  often true that stronger results 

are posslble when t h e  domains of" hereditary dependence is more a.rlose1.y iden t i f i ed ,  

it seems proper to adopt nota t ioa  which Ftllows; us t o  accomplish this ess l ly ,  

We remark i n  



heredi ta ry  d i f f e r e n t i a l  equatfcne. 

t he  real l i n e  by €3, t he  spaw of n-dimensional r e a l  vectors by R and let. 

I I denote any convenient norm on ra". Le: 9 denote the se t  of all. closed 

In  %he m y  of genera l  no+aflc,n we s p e f f y  

rl 

subset-s of W bounded f r o m  above 

A f u w t i o n  a: R + 5 2  9; specified to be a lag func.:,izn i f  
LI-- Y 

-t a ( ~ )  and cr( t ) (  (4, f o r  a l l  i, in  R. For lag Flmef-Eona a we shall 

cons i s t en t ly  denote funct ion values a($ ) by L., 

POP arbitrary w E .Q and a n  open and comecsed ~ € 5  R C  Rn2 l e t  

Q(w, B) denote some dis t inguished class of functions mapping w int.0 A. P Q ~  

exampLe, Q i n  a given s i t u a % o n  qfght, represent c o n t l n i ~ o u  fizt-v+ionl;, piece- 

w i l l  be replaced by C o r  M respectively.  We noLe i n  passing +,bat no r e s t r i c t i o n  

is imposed which excludes the p o s s i b i l i t y  of Q[I.~, R) be iqg  a s ing le  f u n c t i m .  

I n  o w  discussion i t  is conven'ient t o  specffy a function as rgigb,t-con- 

tinuoils i f  it is piecewise continuous a f id  continuous from the Tight. 

POP a given l a g  funct ion a and a funct ion x i n  Q(R, F), adopt the 

nota t ion  x(a  ) f o r  the mapping obtained by.restxlcting x t o  the set  at. 

On o the r  occasions, however, when considering ,x res5rPlcted k , a  s e t  CLI i n  R, 

we s h a l l  use t,he standard nota t ton  X I ~ U .  

t 



~t i s  also convenient t.0 intrciiuce the nota t ion  u ~ ( B ~  for t h e  set 

sf all functions 

f ied Q ( ( - m  t], Rn), O l [ t j  0 0 )  is contained in C ( [ t ,  m I j  B > ,  and it is 

understood that U,(B) 

x i n  Ut(B),  

i s  contained In  Ut(Bjo 

@ :  R +  Rn such that Q 1 (105, tij i s  eontsined 'in some speci- 

i s  inva r i an t  under t r a n s l a t i o n s  t o  t h e  l e f t ,  That is, 

f o r  t i n  R imply t h a t  y T 2 0, and y such tha t  ytt) = x ( t  +T) 

Consider aow that  w e  have a func t ion  G dei ined fot. t in some i n t e rna l  

[to, to t T ~ ] ,  T~ =- 0, and x i n  I T  (E) , ,  we formulate a .~!eredi+,rs,n dirfeF- 

e n t i a 1  equation of general  type t o  be a f u e t i o n a l  relationshkp of" the fom 

t 
0 

T m , t  is, we are deal ing  %rit.h systems where t,he change i n  staze a t  a, spec i f i ed  

time t is  func t iona l ly  dependent on t, and t h e  state h i s t o r y  of the system 

taken with respect to the t i m e  set at0 In  equation (2.1) {.it) will i n  genera l  

denote the r i g h t  hand de r iva t ive  of x CLT t, 

w e  denote by a t  t h e  smallest i n t e r n a l  containing 2%" Tke set, CXtn 

defined by the  formula 

Considering a 1% func t ion  a 
t 

N 

i s  ca l led  t h e  domain of i n i t i a l  spec i f i ca t ion  a t  t f o r  reasons that  w i l l  be 

apparent, I n  s e t t i n g  up an i n i t i a l  data problem f o r  equation (201) 

specifics a n  n-vector func t ion  Q on R A func t ion  x with .x( o! ) = @( a 1 

and sa t i s fy ing  equation (2,1) f o r  a11 t i n  some i n t e r v a l  

i s  r e fe r r ed  t o  as a so lu t ion  of equation (2,1),. The func t ion  Q or  more speeff-  

i c a l l y  Its r e s t r i c t i o n  

- ~ - -  -.- --_I_1_ 

one 
t t 

i t o j  to + TI, T > 0 ,  

+- 
O( at 1 i s  r e fe r r ed  t o  as an initial func t ion ,  

0 



POP w in we specify 1 I 1 I to be 8 norm defined on spaces Q(w, Rn>.  

i n  t u rn  i s  used t o  introduce a notion of" cont inui ty  i n t o  the functional. 1 1  1 1  
r e l a t ionsh ip  defined by equat.iom ( 2 0 1 ) o  For o w  stu&v it i s  apm-opia te  that 

we requi re  1 1  1 1  to have the following special  propert ies :  

(1) If t = m a x  { T: T i n  w 1 i s  contained i n  u c w y  md x i s  a funct ion 

satisfies the imposed conditions,  On the  o ther  hand9 df we assume 

Q(w, Rn)  = M(w, Rn$ 

satisfied by the Eomula 

it i s  c l ea r  that conditions ( 3 )  and ( 5 )  are not i n  geneyal 

When w i s  compact, a convenient n o m  which does neet our conditions i s  given by 

t h e  fornula 
1 

I I X I I  = j w l x ( e )  I2de + l x ( t1 l2  12 

where t = max [T : T i n  w) 



6ur f i r s %  exlstence theorem f o r  the lmt ie l  data problem we have fornu- 

A. -k 
o ( q , J )  1 h a s  a 'Lmit, at t --f to Our eontinulty conditions mpiy t h t  

and WE define 

I G C t Y  

For arbitrary positive constants b and T Let S ' b y ~ )  be the  set of a11 

funct ions y defined on ( - m9 to + T ]  continuous on E t o s  to + T ]  and 

such t ha t  

~ l ( - m ,  to] =: Q 

ly  ( t >  - * (toll 
(-a, to; 

b 

and 

for 81.1 t, tl and t2 i n  [ t,,, to -k 73 Clearly t h e  sets Sdb,T) are convex 

and the ~rzeli- AS c o  1 i Theorem implies they are compact i n  t h e  n o m  L 
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topology defined by the functional 

I X ~ =  SUP { l e  (t)l: t i n  I t o 9  to + P I >  

Choose bl> 0 such tha t  {y : I y- I$ ( to) I $ bll is contained i n  Bo 

Let t ing  JI be an arbitrary function i n  S (bl,T ) we have 

Now by the cont inui ty  of G (t,$(u,) ) 

+ T, w e  have 

in J, (a,) f o r  JI i n  Ut (B) and 
0 

ffxed t ,  we have t h e  ex is tence  of a number 6>0 

I I  +(a t )  -$'fat) 1 1  < 6 implies 

such t h a t  



. 

and 



for a l l  t i n  [fog Lo + 7 3 and $ i.n 8(blg TI) 1 

Now consider an  operator T d&fned on S(blj T ) by the formula 1 

< E - (t - to) s E> 
1 T 

Also  we have f o r  a r b i t r a r y  tl and -b2 in 1tO9 to 5- ~~1 and $ in S(bljT1) 

%hat 



lienee It follows tna t  T m8Ps  S(b T ~ )  i n t o  i t s e l f  and from the Sehauder 

fixed point theorem we may conclude t h e  existence of 8 function x in S(bl - 
such tbt ~ ( x )  = x. That is, x 1 s  such t h a t  x l ( - m ,  tol = @ I Q - C c r  to 1 and 

t 
t o  

x ( t j  =. @(to) -t 1 L(s ,x  (TsJ,IlSI 

for t, in [to, to f T ~ ] ~ T ~ U S  x i s  a so~utim ~f equation 12.1) on 

[ tSo9 to + T ~ :  and the pro32 of o w  theoren is ccmpiete, 

L e t  us now proceed by stating and proving an e x i s t e r s e  and uniqueness 

theorem for hereditary equations which rehucrs t o  a s t m d a r d  Picard-Lindelof 

ty-pe- theorem f o r  ordinary difrcrential equations, 



Y and- Y g  i n  Ut (B)  we have that 
m_ .- 

0 

~ r o o f  ~ T D ~  exis tence  of a S Q ~ I J % - ~ C X I  of q u a t i o n  ( z o  i) corresponding to 
-_wy 

to and defined on some i n t e r v a l  [to, to + ~ ~ 1 ,  T 2 9, follows from 2 

o at 

Theorem 

1. 

i n i t  9al data 

fience we have onLy t o  establish uniqueness and continuous dependence on 

Suppose x ami  x2 are two so lu t ions  of (2,al) correspondinf5 t o  admiss- 1 

able i n i t i a l .  functions % a n d  0 Then w e  have 
2 

%os t> i n  some i n t e r v a l  [ t39 t + 7 ~ ,  T1> 0 ,  Henee using condition (2.6) 

we have t h a t  

o 



. 

where t 

- 1% is elear %hat Q i s  i d e n t i c a l l y  zero .  which in t u r n  implies - @2 If o1 

xI = x2 

i n i t i a l  function. It i s  a l s o  c l e a r  t h a t  g can be  nade as small 8s w e  l i k e  over 

and t h e  uniqueness OB" the so lu t ion  of ( a , l >  ewresponciing t o  a spec i f i ed  

,t- t 

any f i n i t e  i n t e r v a l  icy.  ) - @2(Czto)l!  i s  taken s u f f i c i e n t l y  

small, so  continuity wi th  respec t  t o  i n i t i a l  data, folLowe from (2 .8 )  and our 

[tog t] if" i 

theorem i s  proved, 

A t  t h i s  po in t  l e t  us observe t h e  s i t u a t i o n  when the function space 

Q ( ( - w 9  t O l p  Rn) used i n  t h e  d e f i n i t i o n  of Ut, \ a )  1 s  taken t o  be single 
0 



, -  

f’unc t. ion e In th i s  @ w e  contfnufty with .respec+. t o  i n i t i a l  data is, only 

estab1-lsh.d fn a degenerate, seme, but weo of eowse,st%ll have %he estz 3h- 

m n t  of a unique solut.ion, 

Theorem 2.2 can a l s o  be proved. ming the cont rac t ion  pr inc ip le ,  To 

see  this let us specif‘y a funct ion q on R and def ine V(T) t o  be the s e t  

- *  of a l l  f’unctions \II defined on (- m9 to + I T > 0, s d h  that Y l  ( e m  ,to] = 

) t o j  and Jll[t0, Lo C r] is  contained .ea? C([Lo9 to C B). With each 

element Jr i n  U(7) l e t  us assoc ia te  the norm 

We define a !napping T on V(T)  by the  formula 

For each paix q19 \~r, i n  U(T)  we have 

t 

and the re  nust  e x i s t  b > 0 such that 

Hence w e  conclude that 



and ce r t a in ly  we may choose a = a s o  t h a t  
1 9  

to * al 
b 6, K(S)dS = f3 < 1. 

0 

This, of course9 implies T is a con tawt ion  on U(*i ), and we may conclude 

that there  is a unique point  @ i n  U(T1) such that T(+ ) = y Since a 
1 

d Ji H 

funct ion i n  U(T,) 

under T, we have establ ished exis tence and uniqueness a Continuous dependence 

is a so lu t ion  of (12) i f  and only i f  it is a f i x e d .  point  

on i n i t i a l  data is, as we have demonstrated, a s t ra ightforward app l i ca t ion  of 

Gronwa.llps lemma. 

An important fea ture  of es tab l i sh ing  Theorem 2 by s e t t i n g  up a cont rac t ion  

mapping, is that it reveals  a systematic way of construct ing a so lu t ion  

of equation (12) s t a r t i n g  w%th any element JI i n  U(T1). Specify 

x 

and i f  x is estimated by Tn($) f o r  some f ini te  n, one can e a s i l y  compute 

t h a t  

For a r e s u l t  ana..logous t o  the  Caratheodory theorem f o r  ordinary 

d i f f e r e n t i a l  equations one m y  s t a t e  the following theorem. 



measureable - funct ion of t z, [to, to f T~). .E there e x i s t s  a Lebesque 

in tegrable  function m $uch t h a t  l G ( t p  y ( % ) )  I s m ( t )  f o r  a l l  t i n  

[ to, to + T  Y i n  Ut (R) ,  ;hen for 0 =Ut (B)  there exists T > 0 

- 
0 0 1 - 

such tha t  equation (2.1) has a solut ion x i n  the extended sense on [ t  ,t + -r1) 0 0  -_- 
wnieh corresponds t-0- 0 at 

CI 
t, 0 

Note:: A sohution of (2,l) i n  the  extended sense i s  a funct ion x 
c 

such t he t  x (a: j 
t*, 

and. s a t i s f i e d  the 

x(t> = 

= $(& and on [t t + 7 ) is absolutely continuous 
0 0 0  

EtqU%tiQn, 

(2.7) 

S(bl, T ) be the set of a l l  functions y defined on ( -  u., t + T ]  T < T 

sa55 sf'ying the following eord i t lons  : 
3 0' 

f o r  all t i n  

i n  t h e  norm topology determined by the func t iona l  

[ t o ,  to + 7 3 .  It i s  clear that S(bls T) is csnvex and closed 



f o r  t i n  (to, to + TI. Since G is by hypothesis measurable i n  6, the 

operator T is continuous on S(b19 7 ) .  Let {qn) be any sequence of func-biom 

i n  3(bl, T) converging t o  Clear ly  we have that 

Now by hypothesfs G(s ,  $(a8)) is continuous in J l ( c x , )  uniformly f o r  s in 

bo,, to f T I ,  so 

uniformly f o r  s in [to,, to .I- 71 as n -+ mo Fwthemore ,  %he funct ions 

1O(s, *(as)) - G(s ,  Jm(cl,))l a r e  measurable in 8 and such that 

f o r  s i n  [to9 t],, t < to +- To. Hence by kbesgue ' s  theorem on majorized 

sequences we have that 



as n + a j  and 4.t  follows t h a t  T is con%fnu.ours I n  S(b 7 ) .  Clearly 

T > 0 may be chosen such that 
1 9  

1 

f o r  a l l  t i n  [to, to + -rl] and * i n  S(b19 T ~ ) >  S O  

t 
Also  s ince  dt; m(s)de is a uniforml3. continuous funct ion on [to, to f T1I9 

it follows that for  every E: >. 0 w e  my choose a number q = V(G) > 0 such 

that t19 t2 i n  [tog to + -rlI and It, - 't21 < q imply 

0 

Thus T(S(blp T ~ ) )  

t h e  Arzela-Ascoli Theorem t h a t  T(S(bl 7 , ) )  I s  condi t iona l ly  compact. But, 

of coursep t h i s  implies T 

is a equicontinuous family of functions and it PQllows from 

is completely eont,lnuom and we may employ the  

Schauder f ixed point theorem t o  conclude the exis tence of a fixed point  under 

To This fixed point is obviously ahmlutely continuous and satisfies equation 

(2 .7)p  so the proof of our  theorem is complete. 



3,  P r o p e r m t a r y  D e p w m c e  ~ 

Reconsidering at this point the hypotheses stated in Q U ~  existence 

and uniqueness theorems thus far, we observe that our direct structural 

requirements on the vector functional 

specified structure is required in our initial functions, We shall now 

formulate our class of differential equations of hereditary type in such 

a way as to allow us t o  draw more on the structure of initial functions in 

questions of existence and uniqueness of so8utions and require less direct 

structural assumptions on our functional forms, 

a lag function a and define the set of functions 

G are rather strong whereas no 

To prseeed, Pet us specify 

X i m  0 

We observe that in equation (2,l), 

ItOD to + TO) %a Qa,to (B) into Rn, A little investigation will quickly reveal, 

however, that the function space from which the second argument of G is 

taken isextremelyawkward indeed when we try to introduce a reasonable notion of 

continuity, It is not at a11 immediately clear what structure should be used 

to define a tspofogy, We shall take our clue, however, from a generalized 

notion of translation, 

G can be thought of as a function mapping 

Let w c  (a,, 11 be a specified fixed element in no We shall call a 

lag function a proper if for some chosen set (J we have: 

(1) For each t in R there exists a continuous mapping h, of w 

into at which preserves order, 



(2) The family of functions Ihts t in RQ depend continuously 

on to That is, for every e B 0 there exists a 6 = b;(tDc) 0 such that 

It - T I  e6 implies 

Let us define X P  R -+ B, and for every t in R let the mapping 

Htx on w be defined by the formula 

Since we have a well defined norm on Q(w B I B  for two functions xo R + B 

and y: R -t B we can express the distance p between two functions x(at) 

and y(aJ by the formula 

p(x(a,), y(aT)) = ~ [ H ~ x  - ~ ~ ~ 1 1  0 

The notion of continuity imposed by this metric seems most natural and 

specializes for particular eases to the notion of continuity traditionally 

employed, 

t in R, We may select w = [-lD 01 and define 

For example, consider equation(L4) where at = [t - 1, t] for a l l  

ht(O ) = t + 0, 0 in w 

which i s ,  of course, a simple translation of the type usually employed, We 



are also free, howeverB Lo introduce a weighsing Pactax such as illustrated 

by deflnirg $ by the formula 



and 

respectively for equations (1,l) , (1,2) (1,3) (1,4) , and (P05) and in each 

ease h, and H may be specified by the expressions 
t 

ht(0) = t 9 0 ,  6 in w 

and 

FOP equation (1,6) we may take 

an& for equation (1,8) 

ht(0) = (1 - Q) + Qt, 0 in @ 
t+l 



We remark in passing that general hereditary equations such as we have 

defined are not necessarily autonomous even f f  

a variable, That is, a hereditary equation of the form 

t does not oceur explicitly as 

is not necessarily autonomous, 

in examples (lol)D ( l 0 2 I D  ( 1 , 3 ) 0  ( P , 4 ) ,  and (P05) are involved, however, equation 

(3,6) is autonomouso 

In the cases where lag functions such as those 

An extended concept of hereditary dependence worthy of mention is 

incorporated in the notion of a matrix lag funetion, 

a matrix a of lag functions a i, j = 1, <, ,no Such a construction would 

be useful if one wishes to distinguish 'between the hereditary dependence of the 

various components in a system, 

of the form 

That is, we could consider 

i s  

In particular one may wish to consider a system 

kl 
\ 

where, of course, the operators H are determined by the lag functions 

a i j  
compactly as 

in the manner previously discussed, Clearly this system can be written more 

where 



and 

il 12 in i Htx = (Ht 'xp H x p o o  "$Ht x) ,  
t 

A norm on the elements H x can obviously be constructed by considering a 

matrix norm for matrices of the form 

e 
ij 

( IIHt x 1 6  1 

It may also be convenient t o  consider split hereditary dependence, That 

is, it may be an advantage to consider equations of the form 

, 
A(t) = F ( t D  HtxD 

H7 ( tIX) 

0 

where Ht and H ~ ( t )  5 t, correspond to different lag functions, This 

will mainly be true when the dependence of F on the arguments Htx and 

HV In particular the dependence of F on HT(t)~ might 

be only continuous whereas the dependence on H x might be linear, To illustrate 

further consider an equation of the form 

r(t) 

t 
is distinguishable, 

T(tIX 

t 

where f(t, us v) is continuous on R x Rn x Rn and linear in vo A straight- 

forward argument will show that corresponding to each continuous initial function 

specified on [-ln 01 that this equation has a unique solution existing for all 

t > 0, - 
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4, More Existence and Uniqueness !keorem 

Let us now state  

2,3 where a is assumed to 

Theorem 4,1: rrf 

HtJ, foP t ,  J, 

theorem analogous t o  Theorems 201.p 2,2, 

be a proper l a g  funct ion,  

and 

i n  t f o r  a l l  JI - i n  U ( B ) ,  then fo r  each I$ Ut (B) t he re  

e x i s t s  0 such t h a t  equation (3"  5 1 has a sofution 2 - 0n 

[to,tO+%) correspondinK t o  I$ at too 

tc 0 
- 

meorem 4,2: I L e t  F(t,HtJ,) be a right-continuous function of t 

- on [ t o , t o  +r ),To > 0, foP $I &-L U (B]" Suppose tha t  ~ f o r  a r b i t r a r y  

where K(t) is an in t eg rab le  funct ion of t o  Then for each funct ion I$ 

- i n  Ut (B) t he re  ex is t s  a unique so lu t ion  x of equation (305) defined 
0 

fo r  some T 0,  and corresponding t o  I$ it too ,Further- - on [ to , to*  T1), 1 

more, solut ions x depend contfnuously-on t h e i r - i n i t i a l  data, 
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Theorem 4,3: - FOF JI U (B9 F(t,Ht+) be a continuous func- 

t i o n  of Ht$ foy t [ t o 9 t o +  ~ ~ 9 ,  and l e t  P(t,Ht$] be a measurable 

func t ion  of t 0" [ to , to+  T ~ ) ,  Lebesme in t eg rab le  m e -  

t i o n  m such t h a t  I G(t,Ht$)I Lrn (t9 for a l l  t i n  rto9to+ .PI and JI - - - 
(B), then f o r  41 Ut (B) t h e r e  e x i s t s  0 such t h a t  equation - 

10 

(305) has a so lu t ion  X i n  t h e  ex%ended sense on [to9t,+ +,E which corres- 

ponds t o  4 at too 

Theorems 4 , 1  , 4.2 , and 4 , 3  can be proved by e s s e n t i a l l y  the same argu- 

ments used respec t ive ly  fo r  Theorems 2 , l  2.2 , and 2 0 3 0  

For o i n  $2 and B an open connected set i n  Rn,  l e t  '1115 define 

P(o,B) t o  be the s e t  of a l l  functions 41 : WB 

For Jt i n  P(R,Rn), Ht$ i s  s a i d  t o  be a right-continuous function of t on 

an i n t e r v a l  i n  R if H Jt is a eontfnuous function of t except on a clos- 

ed d i s c r e t e  set and f o r  t i n  t h i s  exceptional d i s c r e t e  set HtJt i s  contin- 

uous from t h e  r i g h t  and l i m  H $I e x i s t s  i n  a function i n  P(w,Rn). 

which a r e  right-continuous, 

t 

S 
S-tt - 

Theorem 4.4: - L e t  F be continuous on [to,to+ ~~j X P(w,B).  

Suppose t h a t  f o r  a l l  (t,Jt> [to,to+ T ~ )  X (B), H $ i s  right-continu- t 

- ous. Then f o r  each 41 U ( B )  there e x i s t s  T~ >O such t h a t  equation (3.5) 

has a so lu t ion  x 9 [ t  , t .+ T ) corresponding t o  4 to. 
0 0  1 
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Proof 0 L e t  J, be an arbitrary function i n  Ut (B) and l e t  
0 

t* be an a rb i t r a ry  bu t  f ixed  point  i n  [ t o , t o  9 p0). Since F is  con- 

tfquous on [to , a)  X P(w, B ) ,  f o r  every E > 0 t h e r e  e x i s t s  a number 

6 = 6 ( ~ ,  t*t) > 0 such t h a t  r n w  [It - t*l, 1st - Ht+J,II) 6 implies 

If w e  suppose t* t o  be a point  of cont inui ty  of Ht@,  then t h e r e  ex is t s  

a pos i t i ve  number 61 = 61(6, t*) .( 6 such t h a t  It - t*g .< 61 implies 

] l H t J ,  - Ht,JIII 6 .  Hence It - t*l 61 implies IF(t,HtJI] - F(t*,Ht*J,)l E ,  

and it follows t h a t  t* is a point  of cont inui ty  of F r t ,  Ht$) as a func- 

t i o n  of t o  Suppose t* i s  a poin t  of d i scont inui ty  of HtJ, and l e t  

Ht*,J, = l i m  HtJI0 Since H pis contained i n  P(w, B) it follows t h a t  t L  t +t*- L 

f o r  every E > 0 the re  e x i s t s  a number- r( = q( E:, t*) 0 such t h a t  

max { I t  - t * l ,  115 - H ~ * - + [  I, < n implies 
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> 0 such t h a t  n1 = ql(€, t*> n and nl But t h e r e  e x i s t s  

0 c t* - t < n1 implies I I H ~ J )  - H ~ ~ ~ $  1 1  Q n o  Hence 0 g t*-t Q 

implies l F ( t ,  Ht$) - F( t* ,  Htf-$)I E and it follows t h a t  

1 

Thus 

as H $ and t h e  poin ts  of -d iscont inui ty  are of t h e  same type, It 

follows, of course, t h a t  

on 

apply Theorem 4 , l .  

F ( t ,  H $) has t h e  same po in t s ' o f  cont inui ty  and d iscont inui ty  t 

t 
F ( t ,  Ht$) is aright continuous h e t i o n  of t 

[ t o , t o  + T ~ ) .  To complete the-proof  of t h i s  Theorem we have only t o  

Corollary: If i n  Theorem 4,4 w e  replace P(w,B) b x  C(o,BS and replace 

"right-continuous" by neontinuousllq whereever it occurs,  then w e  s t i l l  have 

a t r u e  theorem. 

Now f o r  w i n  R and B an open'and connected subset of Rn l e t  

us def ine 

H ( w , B )  = Ht$ : $ i n  Ut ( B ) ,  t 2 to 1 0  

0 
4.1 
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I n  a l l  our existence theorems thus f a r - o u r  hypotheses have included an 

e x p l i c i t  c o n t i n ~ t y  condition f o r  F o r  G with respect t o  t as it 

occurs i n  both t h e  first and second argument, I n  our next theorem w e  

s h a l l  not include such a condition but  shal l  i n s t ead  r equ i r e  c o n t i n ~ t y  

on [to,to +To)  X H ( w ,  B) only. However, w e  shall. f i r s t . n e e d  to introduce 

the  notion of uniform heredi ta ry  dependence 

Consider two functions J' and 4 i n  Ut (B) and an i n t e r v a l  
0 

[t,,t,] i n  R. We s h a l l  denote t h e  n o m  1 1 , I  1 of t h e  d i f fe rence  

-1 
HtJ' - H 4 t aken  w i t h  respec t  t o -  t h e  r e s t r i c t e d  domain ht (atn [t,,t,] ) by t 

-1 
With respect t o  t h e  p a r t i c u l a r  r e s t r i c t i o n  ht (at (-oo,T]) we shall use the 

nota t ion  

4 T  

HtJ' denotes t h e  r e s t r i c t i o n  of H t J' t o  h- l (a tn( -oo ,?] ) .  t 



+ t o  
If f o r  each $ i n  Ut (B) Ht$ i s  uniformly continuous i n  t f o r  

0 

t 5 t then equation (3.5) i s  said t o  have uniform he red i t a ry  depend- 

- ence (with respect t o  Ut (B)). 
0 ’  

0 

Theorem 4,5 : L e t  F be continuous on [to,to + T ~ )  X H(u,B) and 

Then f o r  each 

- 
suppose equation (3.5) has  uniform he red i t a ry  dependence, 

4 - i n  Ut (B) t h e r e  e x i s t s  T ~ ’  0 such t h a t  equation (3.5) has a so lu t ion  
0 

x on [ t o , t o  * T ~ )  corresponding t o  C$ t Furthermore, x fs 
continuously d i f f e r e n t i a b l e  on [ t o , t o  * rl) from t h e  r igh t ,  

00 

- Proof : Choosing JI i n  Ut ( B )  we observe t h a t  t h e  cont inui ty  

of F on [to,to + T ~ )  X H f w  , B]  implies t h a t  for  every E 0 t h e r e  

e x i s t s  a number 

0 

6 = & ( e ,  t )  such t h a t  i f  m a x  {It - T I ,  1 1  Ht$ - HT$ 1 1  1 < 6, 

then  

Now t h e r e  exists a constant b such t h a t  
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h T ( e )  i n  at\zt , t,? i n  [ t  ,t + T 11. 
0 0  0 

0 

Since 6 i s  uniformly continuous on [ t o , t o  * T ~ ]  , o T s. T 1 0 ,  

t he re  exis ts  r1>0 such t h a t  I I ht - hTI I a implies t h e  second term on 

t h e  r i g h t  hand s ide  of (4,2) is <- On t h e  o ther  hand using t h e  

cont inui ty  of h 

can choose p>O such t h a t  I t  - T I  1! implies 

2b 

and our condition of i m i f o m  heredi ta ry  dependence w e  t 

Then choosing T such t h a t  It - T I <; min ( 6  ,p  1 implies 

I I Ht$ - HT+ I I < 6 and we have i n  t u r n  t h a t  

We conclude, therefore ,  t h a t  F(t,Ht+) is  a continuous function of t and 

our theorem follows as a consequence.of Theorem 4,1, 
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Corollary : - L e t  F be continuous on [ t o , t o  + T ~ )  X C ( w , B ) ,  

"hen f o r  any uniformly continuous function 4 

t he re  e x i s t s  a number T >O such t h a t  equation (3-5) has a so lu t ion  

x defined on [to,to + T ~ )  corresponding t o  $ 3 too Furthermore, 

x i s  continuously d i f f e ren t i ab le  on [ to , to+  from the r i g h t ,  

C( (- go, t o ] ,  B )  

1 

Proof. L e t  Q( ( - m , t o ]  , R n )  used i n  the  de f in i t i on  of 

U ( B )  cons is t  of t he  s ing le  functfon 4.  Since 4 is  u c i f o m l y  

continuous, w e  have t h a t  given any E>O t he re  e x i s t s  6>0 such t h a t  

1 1  ht - h r l I  < 6 implies 14 (h t (8)  ) - 4 { h T ( e )  ) I  < E f o r  a l l  8 i n  

h- l (  ( - ~ a , t ~ ] ) ~  But by t h e  e o n t i n ~ t y - o f  ht w e  may choose rp0 

t h a t  It - T I  rl implies I I ht - h T \  1 < 6 and consequently implies 

I $  (h t (8)  ) - +(h,(e) > I  < E. 

heredi ta ry  dependence and apply Theorem k 0 5  t o  complete our proof,  

such 

Hence w e  may conclude t h a t  we have uniform 

Theorem 4,6: L e t  F be continuous. on [ t o , t o  * T ) X P(w,B) where w 0 - 

t = max (0 : e i n  w 1. Then for  any function $ fn P( (-m,t0] ,B)  
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t he re  e x i s t s  a number T >O such t h a t  equation (3*59 has a so lu t ion  1 

x defined on [ t o , t o  + io) corresponding t o  @ & too Fur them o re  Y 

x i s  continuously d i f f e ren t i ab le  on [ t o , t o  9 T ~ )  from t h e  r i g h t ,  

Proof, L e t  Ut (B) be defined so t h a t  U( (-.cj.,to], R n )  
0 

n U (  (-w,to],R ) = P( ( - w , t o ] , B ) .  t h e  cont inui ty  of F on 

[ t o , t o  + T ) X P(w,B) implies t h a t  f o r  every c>O there e x i s t s  a 

number 6 = 6 ( ~  ,t) 

0 

such t h a t  i f  max { It - z 1 ,  I I Ht$ - HT$ 1 1 1 6 ,  then 

By t h e  r ight-cont inui ty  of J, and t h e  compactness of w we can e s t a b l i s h  

t h e  existence of a number rl = ~ ( 6 )  0 such t h a t  1 1  ht - hz 1 1  < ~ ( 6 )  

implies 

ht on t implies t h a t  we may choose p = p ( q , t )  such t h a t  It - T I  <u 

I I Ht$ - HT$ I I < 6, The continuous dependence of t h e  function 

implies I Iht - hT I I <rl Therefore, choosing T such t h a t  

It - T I  < min (6,~) implies IF(t,Ht$) - F(i,HT$)I < E ,  and w e  may 

conclude t h a t  F(t,HtJI) i s  a continuous function of t o  Hence Our theorem 

follows as a consequence of Theorem b o l o  
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Our next theorem i s  a genera l iza t ion  of Theorem 4,2 which draws 

a t t e n t i o n  t o  the  s p e c i a l  na ture  of he red i t a ry  d i f f e r e n t i a l  equations 

Clearly t h e  statement and r e s u l t s  of t h i s  theorem would not even be meaning- 

f u l  f o r  d i f f e r e n t i a l  equations i n  a Banach space generally.  

Theorem 4.7 : L e t  G( t ,$ (a t )  be a r igh t  continuous function of t 

f o r  a l l  t & [ t o y t o  + T ~ )  ' cO.O , and a l l  J, Ut (B). For f ixed  
0 

- 
tl>O let Bt = a . n a  , Xt = a \a , and f o r  each J, in Ut (B) ,let t t-rl t t-tl 

0 

@ ( t , $ ( a t )  be an n-vector function continuous i n  $(St) uniformly i n  

t and measurable i n  t on [ t o , t o  + ro) For a r b i t r a r y  J, J,* 

Ut ( B )  let 
0 

where - K ( t )  is a p o s i t i v e  in tearab le  function e If t h e r e  e x i s t s  an in tegrable  

function m 9 [ t o , t o  + r0) such t h a t  I @ ( t ,  $(Bt) I 5 m ( t )  then f o r  

- each $ Ut (B)  , t h e r e  e x i s t s  a unique so lu t ion  x of equation (2.1) 
0 



defined on [ t o , t o  9 r1 li , f o r  some rl>O and corresponding t o  41 

- at toe Furthermore, so lu t ions  x depend continuously from t h e  r i g h t  

on t h e i r  i n i t i a l  data. 

- Proof. The ex is tence ,  at l e a s t  i n  t h e  extended sense,  of a 

so lu t ion  of (2,l) corresponding t o  $ at  to and defined on some in- 

t e r v a l  [ t o , t o  + r2) , r2>0 , follows from Theorem 3.30 On t h e  o the r  

hand, our hypothesis t h a t  G( t ,$ (a  ) ) i n  a right-continuous function of t t 

implies t h a t  any so lu t ion  i n  t h e  extended sense i s  a so lu t ion-  i n  the  usual 

senseo Hence we have only t o  es tab l i sh  uniqueness and continuous dependence 

on i n i t i a l  data. 

Suppose x and x a re  two so lu t ions  of (2,I-l corresponding 1 2 

and 9 i n  Ut ( B ) ,  Then w e  have 
0 

2 

P t  

f o r  t i n  some i n t e r v a l  [ t o , t o  + rl], r1 > 0. Using condition ( 4.2) w e  

have 

rt 
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. 

where K(t) is a positive integrable function. Defining a function g by 

the formula 

and using the fact that 

we have that i 



Now using Gronwall 

1 Ixl(8,n[to,t3 )-x2 

s lema.  it follows t h a t  

Choosing t - to 5 q1 = min {rl,n} and u t i l i z f n g . o w  hypothesis on @ and 

Lebesgue's-theorem on majorized sequences; w e  may conclude t h a t  f o r  every 

[$1-+2[ 1 c 6 implies g ( t )  < E .  E 0 w e  can choose 6 0 such t h a t  

Hence c l e a r l y  (4 ,6)  implies uniqueness 

t i o n s  of  (2.1) with respect t o  i n i t i a l  

and continuous dependence of solu- 

da ta  f o r  t - to 2 nI If 

a T w e  may replace equation (4 .3 )  by t h e  equation O l  1 

and repeating our argument, uniqueness and continuous dependence of so lu t ions  

with respect t o  i n i t i a l  data may be extended f o r  t - t min {r1,2nl} 
0 

If k is t h e  smallest  i n t e g e r -  such t h a t  knl 2 T ~ ,  then t h e  ind ica t ed  s t e p  

by s t e p  procedure may be repeated k times t o  e s t a b l i s h  uniquesness and con- 

t inuous dependence f o r  
, 

t - to & T~ and complete our proof. 
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